This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248565 #9 Oct 15 2014 20:58:14 %S A248565 1,2,3,5,6,7,9,10,11,13,14,16,17,19,20,21,23,24,26,27,29,30,32,33,35, %T A248565 36,38,39,41,42,43,45,46,48,49,51,52,54,55,57,58,60,61,63,64,66,67,69, %U A248565 70,72,73,75,76,78,79,81,82,84,85,86,88,89,91,92,94,95 %N A248565 Least k such that log(4/3) - sum{1/(h*4^h), h = 1..k} < 1/8^n. %C A248565 This sequence provides insight into the manner of convergence of sum{1/(h*4^h), h = 1..k} to log(4/3). Since a(n+1) - a(n) is in {1,2} for n >= 1, the sequences A248566 and A248567 partition the positive integers. %D A248565 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15. %H A248565 Clark Kimberling, <a href="/A248565/b248565.txt">Table of n, a(n) for n = 1..1000</a> %e A248565 Let s(n) = log(4/3) - sum{1/(h*4^h), h = 1..n}. Approximations follow: %e A248565 n ... s(n) ........ 1/8^n %e A248565 1 ... 0.037682 ... 0.125 %e A248565 2 ... 0.006432 ... 0.015625 %e A248565 3 ... 0.001223 ... 0.001953 %e A248565 4 ... 0.000247 ... 0.000244 %e A248565 5 ... 0.000051 ... 0.000030 %e A248565 a(4) = 5 because s(5) < 1/8^4 < s(4). %t A248565 z = 2500; p[k_] := p[k] = Sum[1/(h*4^h), {h, 1, k}]; %t A248565 N[Table[p[k], {k, 1, z/5}], 12]; %t A248565 N[Table[Log[4/3] - p[n], {n, 1, z/5}]]; %t A248565 f[n_] := f[n] = Select[Range[z], Log[4/3] - p[#] < 1/8^n &, 1]; %t A248565 u = Flatten[Table[f[n], {n, 1, z}]] ; (* A248565 *) %t A248565 Flatten[Position[Differences[u], 1]]; (* A248566 *) %t A248565 Flatten[Position[Differences[u], 2]]; (* A248567 *) %Y A248565 Cf. A083679 (log(4/3)), A248566, A248567, A248559, A248565. %K A248565 nonn,easy %O A248565 1,2 %A A248565 _Clark Kimberling_, Oct 09 2014