cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248572 a(n) = 29*n + 1.

This page as a plain text file.
%I A248572 #36 Dec 02 2024 15:00:30
%S A248572 1,30,59,88,117,146,175,204,233,262,291,320,349,378,407,436,465,494,
%T A248572 523,552,581,610,639,668,697,726,755,784,813,842,871,900,929,958,987,
%U A248572 1016,1045,1074,1103,1132,1161,1190,1219,1248,1277,1306,1335,1364,1393,1422
%N A248572 a(n) = 29*n + 1.
%C A248572 Numbers congruent to 1 mod 29.
%C A248572 Both A141977 and A059256 give the primes in this sequence.
%H A248572 Karl V. Keller, Jr., <a href="/A248572/b248572.txt">Table of n, a(n) for n = 0..10000</a>
%H A248572 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A248572 a(n) = 29*n + 1.
%F A248572 G.f.: (1+28*x)/(1-x)^2. - _Vincenzo Librandi_, Oct 26 2014 [corrected by _Georg Fischer_, May 24 2019]
%F A248572 E.g.f.: (1 + 29*x)*exp(x). - _G. C. Greubel_, May 24 2019
%e A248572 For n = 5, 29n + 1 = 145 + 1 = 146.
%t A248572 29Range[0, 60] + 1 (* _Alonso del Arte_, Oct 09 2014 *)
%t A248572 CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* _Vincenzo Librandi_, Oct 26 2014 *)
%t A248572 LinearRecurrence[{2,-1},{1,30},50] (* _Harvey P. Dale_, Oct 08 2019 *)
%o A248572 (Python)
%o A248572 for n in range(61):
%o A248572     print(29*n+1, end=', ')
%o A248572 (PARI) vector(60, n, n--; 29*n+1) \\ _Derek Orr_, Oct 08 2014
%o A248572 (Magma) [29*n+1: n in [0..60]]; // _Vincenzo Librandi_, Oct 26 2014
%o A248572 (Sage) [29*n+1 for n in (0..60)] # _G. C. Greubel_, May 24 2019
%o A248572 (GAP) List([0..60], n-> 29*n+1); # _G. C. Greubel_, May 24 2019
%Y A248572 Cf. A141977 (Primes congruent to 1 mod 29).
%Y A248572 Cf. A059256 (Primes p such that x^29 = 2 has no solution mod p).
%Y A248572 Cf. A195819 (multiples of 29).
%K A248572 nonn,easy
%O A248572 0,2
%A A248572 _Karl V. Keller, Jr._, Oct 08 2014