A248573 An irregular triangle giving the Collatz-Terras tree.
1, 2, 4, 8, 5, 16, 3, 10, 32, 6, 20, 21, 64, 12, 13, 40, 42, 128, 24, 26, 80, 84, 85, 256, 48, 17, 52, 53, 160, 168, 170, 512, 96, 11, 34, 104, 35, 106, 320, 336, 113, 340, 341, 1024, 192, 7, 22, 68, 69, 208, 23, 70, 212, 213, 640, 672, 75, 226, 680, 227, 682, 2048
Offset: 0
Examples
The irregular triangle CT(l,m) begins: l\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... 0: 1 1: 2 2: 4 here the 1, which would generate the complete tree again, is omitted 3: 8 4: 5 16 5: 3 10 32 6: 6 20 21 64 7: 12 13 40 42 128 8: 24 26 80 84 85 256 9: 48 17 52 53 160 168 170 512 10: 96 11 34 104 35 106 320 336 113 340 341 1024 11: 192 7 22 68 69 208 23 70 212 213 640 672 75 226 680 227 682 2048 12: 384 14 44 45 136 138 416 15 46 140 141 424 426 1280 1344 150 452 453 1360 151 454 1364 1365 4096 ... reformatted, and extended - _Wolfdieter Lang_, Oct 31 2014 -------------------------------------------------------------------------------------------------------------- From _Wolfdieter Lang_, Oct 31 2014: (Start) The Collatz-Terras tree starting with 4 looks like (numbers x == 2 (mod 3) are marked with a left bar, and the left branch ends then in (2*x-1)/3 and the vertical one in 2*x) l=2: 4 l=3: |8 l=4: |5 16 l=5: 3 10 |32 l=6: 6 |20 21 64 l=7: 12 13 40 42 |128 l=8: 24 |26 |80 84 85 256 l=9: 48 |17 52 |53 160 168 |170 |512 l=10: 96 |11 34 |104 |35 106 320 336 |113 340 |341 1024 l=11: 192 7 22 |68 69 208 23| 70 212 213 640 672 75 226 680 227 682 2048 ... E.g., x = 7 = CT(11, 2) leads back to 4 via 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, and from there back to 2, 1. (End) --------------------------------------------------------------------------------------------------------------
Links
- Sebastian Karlsson, Rows l = 0..35, flattened
- Riho Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976) 241-252.
- Eric Weisstein's World of Mathematics, Collatz Problem.
Programs
-
Mathematica
Join[{{1}, {2}}, NestList[Flatten[Map[If[Mod[#, 3] == 2, {(2*#-1)/3, 2*#}, 2*#]&, #]]&, {4}, 10]] (* Paolo Xausa, Jan 25 2024 *)
-
PARI
rows(N) = my(r=List(),x); for(i=0, min(2, N), listput(r, x=[2^i])); for(n=3, N, my(w=List()); for(i=1, #x, my(q=2*x[i]); if(1==q%3, listput(w, (q-1)/3)); listput(w, q)); listput(r, x=Vec(w))); Vec(r); \\ Ruud H.G. van Tol, Jan 25 2024
Extensions
Edited. New name (old corrected name as comment). - Wolfdieter Lang, Oct 31 2014
Comments