A248601 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: for any number n > 0, let f(n) be the function that associates k to the prime(k)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the arithmetic functions with nonnegative integer values and a finite number of nonzero values; let g be the inverse of f; T(n, k) = g(f(n) * f(k)) (where i * j denotes the Dirichlet convolution of i and j).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 13, 16, 13, 6, 1, 1, 7, 21, 25, 25, 21, 7, 1, 1, 8, 19, 36, 23, 36, 19, 8, 1, 1, 9, 27, 49, 65, 65, 49, 27, 9, 1, 1, 10, 49, 64, 37, 126, 37, 64, 49, 10, 1, 1, 11, 39, 81, 125, 133, 133, 125
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------------- 1| 1 1 1 1 1 1 1 1 1 1 -> A000012 2| 1 2 3 4 5 6 7 8 9 10 -> A000027 3| 1 3 7 9 13 21 19 27 49 39 -> A297002 4| 1 4 9 16 25 36 49 64 81 100 -> A000290 5| 1 5 13 25 23 65 37 125 169 115 6| 1 6 21 36 65 126 133 216 441 390 7| 1 7 19 49 37 133 53 343 361 259 8| 1 8 27 64 125 216 343 512 729 1000 -> A000578 9| 1 9 49 81 169 441 361 729 2401 1521 10| 1 10 39 100 115 390 259 1000 1521 1150
Links
- Wikipedia, Dirichlet convolution.
Crossrefs
Programs
-
PARI
T(n,k) = my(fn=factor(n), pn=apply(primepi,fn[,1]~), fk=factor(k), pk=apply(primepi,fk[,1]~)); prod(i=1, #pn, prod(j=1, #pk, prime(pn[i]*pk[j])^(fn[i,2]*fk[j,2])))
Formula
T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n * i)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A297002(n),
- T(n, 3^i) = A297002(n)^i for any i >= 0,
Comments