This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248611 #4 Oct 15 2014 21:02:00 %S A248611 1,3,5,8,11,14,18,22,26,30,34,38,42,47,51,55,60,64,69,73,78,82,87,91, %T A248611 96,100,105,110,114,119,123,128,133,137,142,147,151,156,161,165,170, %U A248611 175,179,184,189,193,198,203,207,212,217,221,226,231,236,240,245 %N A248611 Numbers k such that A248610(k+1) = A248610(k). %H A248611 Clark Kimberling, <a href="/A248611/b248611.txt">Table of n, a(n) for n = 1..400</a> %e A248611 (A248610(k+1) - A248610(k)) = (0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, ...), so that A248611 = (1, 3, 5, 8, 11, 14, 18, 22, 26, ..) and A248612 = (2, 4, 6, 7, 9, 10, 12, 13, ...). %t A248611 z = 300; p[k_] := p[k] = Sum[1/((h^2)*Binomial[2 h, h]), {h, 1, k}] %t A248611 d = N[Table[Pi^2/18 - p[k], {k, 1, z/5}], 12] %t A248611 f[n_] := f[n] = Select[Range[z], Pi^2/18 - p[#] < 1/3^n &, 1] %t A248611 u = Flatten[Table[f[n], {n, 1, z}]] (* A248610 *) %t A248611 d = Differences[u] %t A248611 v = Flatten[Position[d, 0]] (* A248611 *) %t A248611 w = Flatten[Position[d, 1]] (* A248612 *) %Y A248611 Cf. A248610, A248612, A248607. %K A248611 nonn,easy %O A248611 1,2 %A A248611 _Clark Kimberling_, Oct 10 2014