cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248608 Numbers k such that A248607(k+1) = A248607(k) + 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 29, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 56, 59, 61, 63, 66, 68, 70, 73, 75, 77, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 106, 108, 111, 113, 115, 118, 120, 122, 125, 127, 130, 132, 134, 137, 139
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Examples

			(A248607(k+1) - A248607(k)) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2,...), so that A248608 = (1, 3, 5, 7, 9, 11, 13, 15, 17, ..) and A248609 = (2, 4, 6, 8, 10, 12, 14, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[2^h/((2 h + 1) Binomial[2 h, h]), {h, 0, k}]
    d = N[Table[Pi/2 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], Pi/2 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248607 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]] (* A248608 *)
    w = Flatten[Position[d, 2]] (* A248609 *)

A248610 Least k such that (Pi^2)/18 - sum{1/(h^2*C(2h,h)), h = 1..k} < 1/3^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 45, 46, 47, 47, 48, 49, 50
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{1/(h^2*C(2h,h)), h = 1..k} to (Pi^2)/18. Since a(n+1) - a(n) is in {0,1} for n >= 1, the sequences A248611 and A248612 partition the positive integers.

Examples

			Let s(n) = Pi/2 - sum{2^h/((2h+1)*C(2h,h)), h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/3^n
1 ... 0.0483114 ... 0.333333
2 ... 0.0066446 ... 0.111111
3 ... 0.0010891 ... 0.037037
4 ... 0.0001962 ... 0.012345
5 ... 0.00003754 .. 0.004115
a(5) = 3 because s(3) < 1/3^5 < s(2).
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 20.

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[1/((h^2)*Binomial[2 h, h]), {h, 1, k}]
    d = N[Table[Pi^2/18 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], Pi^2/18 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248610 *)
    d = Differences[u]
    v = Flatten[Position[d, 0]]  (* A248611 *)
    w = Flatten[Position[d, 1]]  (* A248612 *)

A248609 Numbers k such that A248607(k+1) = A248607(k) + 2.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 19, 21, 23, 25, 27, 28, 30, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 104, 105, 107, 109, 110, 112
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Examples

			(A248607(k+1) - A248607(k)) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2,...), so that A248608 = (1, 3, 5, 7, 9, 11, 13, 15, 17, ..) and A248567 = (2, 4, 6, 8, 10, 12, 14, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[2^h/((2 h + 1) Binomial[2 h, h]), {h, 0, k}]
    d = N[Table[Pi/2 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], Pi/2 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248607 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]] (* A248608 *)
    w = Flatten[Position[d, 2]] (* A248609 *)

A248612 Numbers k such that A248610(k+1) = A248610(k) + 1.

Original entry on oeis.org

2, 4, 6, 7, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Examples

			(A248610(k+1) - A248610(k)) = (0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, ...), so that A248611 = (1, 3, 5, 8, 11, 14, 18, 22, 26, ..) and A248612 = (2, 4, 6, 7, 9, 10, 12, 13, ...).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[1/((h^2)*Binomial[2 h, h]), {h, 1, k}]
    d = N[Table[Pi^2/18 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], Pi^2/18 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248610 *)
    d = Differences[u]
    v = Flatten[Position[d, 0]]  (* A248611 *)
    w = Flatten[Position[d, 1]]  (* A248612 *)
Showing 1-4 of 4 results.