This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248617 #17 Apr 07 2022 09:21:00 %S A248617 1,2,2,6,1,9,1,1,7,0,8,8,3,5,1,7,0,7,0,8,1,3,0,6,0,9,6,7,4,7,1,9,0,6, %T A248617 7,5,2,7,2,4,2,4,8,3,5,0,2,2,0,7,4,0,2,7,9,1,3,8,6,1,6,8,4,3,5,4,2,9, %U A248617 8,4,6,7,6,2,4,4,2,8,0,3,8,1,6,9,2,3,7,4,2,5,6,3,7,7,9,6,6,0,9,5,3,3,4,6,9 %N A248617 Decimal expansion of the solution when Gudermannian(x) equals 1. %C A248617 Inverse of A248618. %H A248617 Wikipedia, <a href="http://en.wikipedia.org/wiki/Gudermannian_function">Gudermannian function</a>. %F A248617 Equals log(tan((2+Pi)/4)). - _Vaclav Kotesovec_, Oct 11 2014 %F A248617 From _Amiram Eldar_, Apr 07 2022: (Start) %F A248617 Equals 2*arctanh(tan(1/2)). %F A248617 Equals Integral_{x=0..1} sec(x) dx. (End) %e A248617 1.22619117088351707081306096747190675272424835022074027913861684354298467624428... %p A248617 evalf(log(tan((2+Pi)/4)),100) # _Vaclav Kotesovec_, Oct 11 2014 %t A248617 RealDigits[ InverseGudermannian[ 1], 10, 111][[1]] %Y A248617 Cf. A248618. %K A248617 nonn,cons %O A248617 1,2 %A A248617 _Robert G. Wilson v_, Oct 09 2014