cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248620 Lesser of twin primes of (29n + 1, 29n + 3).

This page as a plain text file.
%I A248620 #41 May 22 2025 10:21:41
%S A248620 59,1277,1451,3539,4931,5279,9281,9629,10499,11717,12239,16067,22157,
%T A248620 23027,23201,24419,26681,31727,34511,35729,37991,40427,45821,47387,
%U A248620 48779,55217,59219,60089,70181,70877,72269,75401,77489,79229,80447,83231,85667,88799
%N A248620 Lesser of twin primes of (29n + 1, 29n + 3).
%C A248620 Lesser of twin primes where A195819(n) + 1 and A195819(n) + 3 are both primes.
%C A248620 Intersection of A001359 and A141977.
%H A248620 Karl V. Keller, Jr., <a href="/A248620/b248620.txt">Table of n, a(n) for n = 1..1000</a>
%e A248620 29 * 2 + 1 = 59, which is prime, and 61 is also prime, so 59 is in the sequence.
%e A248620 29 * 44 + 1 = 1277, which is prime, and 1279 is also prime, so 1277 is in the sequence.
%e A248620 29 * 50 + 1 = 1451, which is prime, and 1453 is also prime, so 1451 is in the sequence.
%e A248620 29 * 54 + 1 = 1567, which is prime, but 1569 = 3 * 523, so 1567 is not in the sequence.
%t A248620 Select[58Range[1500] + 1, PrimeQ[#] && PrimeQ[# + 2] &] (* _Alonso del Arte_, Oct 31 2014 *)
%t A248620 Select[29*Range[2,3150,2],AllTrue[#+{1,3},PrimeQ]&]+1 (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 16 2019 *)
%o A248620 (Python)
%o A248620 from math import *
%o A248620 from sympy import isprime
%o A248620 for n in range(0,10001):
%o A248620   if isprime(58*n+1) and isprime(58*n+3): print (58*n+1,end=', ')
%o A248620 (PARI) lista(nn) = {forstep (n=2, nn, 2, if (isprime(p=29*n+1) && isprime(29*n+3), print1(p, ", ")););} \\ _Michel Marcus_, Oct 17 2014
%Y A248620 Cf. A001359 (Lesser of twin primes), A195819 (Multiples of 29).
%Y A248620 Cf. A141977 (Primes congruent to 1 mod 29), A141979 (Primes congruent to 3 mod 29).
%K A248620 nonn
%O A248620 1,1
%A A248620 _Karl V. Keller, Jr._, Oct 10 2014