A248629 Least k such that 6 - sum{(h^2)/2^h, h = 1..k} < 1/3^n.
9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 76, 78, 80, 81, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 112, 114
Offset: 1
Examples
Let s(n) = 6 - sum{(h^2)/2^h, h = 1..n}. Approximations follow: n ... s(n) ........ 1/3^n 1 ... 5.50000 ... 0.333333 2 ... 4.50000 ... 0.111111 3 ... 3.37500 ... 0.037037 4 ... 2.37500 ... 0.012345 5 ... 1.59375 ... 0.004115 6 ... 1.03125 ... 0.001371 7 ... 0.64843 ... 0.000457 8 ... 0.39843 ... 0.000152 9 ... 0.24023 ... 0.000050 10 .. 0.14257 ... 0.000018 11 .. 0.08349 ... 0.000006 a(2) = 11 because s(11) < 1/9 < s(10).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Comments