cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248629 Least k such that 6 - sum{(h^2)/2^h, h = 1..k} < 1/3^n.

Original entry on oeis.org

9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 76, 78, 80, 81, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 112, 114
Offset: 1

Views

Author

Clark Kimberling, Oct 10 2014

Keywords

Comments

This sequence provides insight into the manner of convergence of sum{(h^2)/2^h, h = 1..k} to 6.

Examples

			Let s(n) = 6 - sum{(h^2)/2^h, h = 1..n}.  Approximations follow:
n ... s(n) ........ 1/3^n
1 ... 5.50000 ... 0.333333
2 ... 4.50000 ... 0.111111
3 ... 3.37500 ... 0.037037
4 ... 2.37500 ... 0.012345
5 ... 1.59375 ... 0.004115
6 ... 1.03125 ... 0.001371
7 ... 0.64843 ... 0.000457
8 ... 0.39843 ... 0.000152
9 ... 0.24023 ... 0.000050
10 .. 0.14257 ... 0.000018
11 .. 0.08349 ... 0.000006
a(2) = 11 because s(11) < 1/9 < s(10).
		

Crossrefs

Programs

  • Mathematica
    z = 300; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}]
    d = N[Table[6 - p[k], {k, 1, z/5}], 12]
    f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248629 *)
    d = Differences[u]
    v = Flatten[Position[d, 1]]  (* A248630 *)