This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248633 #4 Oct 17 2014 23:18:43 %S A248633 3,5,7,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32,33,35,36,38,40,41, %T A248633 43,44,46,47,49,50,52,53,55,57,58,60,61,63,64,66,67,69,70,72,73,75,76, %U A248633 78,80,81,83,84,86,87,89,90,92,93,95,96,98,99,101,102,104 %N A248633 Least k such that 20/27- sum{(h^2)/4^h, h = 1..k} < 1/8^n. %C A248633 This sequence provides insight into the manner of convergence of sum{(h^2)/4^h, h = 1..k} to 20/27. The difference sequence of A248633 entirely of 1s and 2s, so that A248634 and A248635 partition the positive integers. %H A248633 Clark Kimberling, <a href="/A248633/b248633.txt">Table of n, a(n) for n = 1..1000</a> %e A248633 Let s(n) = 20/27 - sum{(h^2)/4^h, h = 1..n}. Approximations follow: %e A248633 n ... s(n) ........ 1/8^n %e A248633 1 ... 0.49074 ... 0.125000 %e A248633 2 ... 0.24074 ... 0.015625 %e A248633 3 ... 0.10011 ... 0.001953 %e A248633 4 ... 0.03761 ... 0.000244 %e A248633 5 ... 0.01320 ... 0.000030 %e A248633 a(2) = 5 because s(5) < 1/8^2 < s(2). %t A248633 z= 300; p[k_] := p[k] = Sum[(h^2/4^h), {h, 1, k}]; %t A248633 d = N[Table[20/27 - p[k], {k, 1, z/5}], 12]; %t A248633 f[n_] := f[n] = Select[Range[z], 20/27 - p[#] < 1/8^n &, 1]; %t A248633 u = Flatten[Table[f[n], {n, 1, z}]] (* A248633 *) %t A248633 d = Differences[u] %t A248633 Flatten[Position[d, 1]] (* A248634 *) %t A248633 Flatten[Position[d, 2]] (* A248635 *) %Y A248633 Cf. A248632, A248630. %K A248633 nonn,easy %O A248633 1,1 %A A248633 _Clark Kimberling_, Oct 11 2014