This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248661 #16 Feb 16 2025 08:33:23 %S A248661 5,17,137,227,827,1427,1667,1877,2027,2087,2657,3527,3767,4217,4967, %T A248661 10037,11117,11777,12107,13877,17987,19697,20717,21557,22037,23687, %U A248661 24977,27527,27737,34157,37307,41177,42017,42407,47657,48677 %N A248661 Initial members of prime quadruples (n, n+2, n+54, n+56). %C A248661 This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+54,n+56). %C A248661 Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (primes, 30n-13), A181605 (twin primes, end 7), and A092340 (prime n, where n^2+2*n divides (fibonacci(n^2)+fibonacci(2*n))). %H A248661 Karl V. Keller, Jr., <a href="/A248661/b248661.txt">Table of n, a(n) for n = 1..100000</a> %H A248661 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeQuadruplet.html">Prime Quadruplet.</a> %H A248661 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimes.html">Twin Primes</a> %H A248661 Wikipedia, <a href="http://www.wikipedia.org/wiki/Twin_prime">Twin prime</a> %e A248661 For n=17, the numbers 17, 19, 71, 73, are primes. %o A248661 (Python) %o A248661 from sympy import isprime %o A248661 for n in range(1,10000001,2): %o A248661 if isprime(n) and isprime(n+2) and isprime(n+54) and isprime(n+56): print(n,end=', ') %Y A248661 Cf. A077800 (twin primes), A128468, A039949, A181605, A092340. %K A248661 nonn %O A248661 1,1 %A A248661 _Karl V. Keller, Jr._, Jan 11 2015