cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248664 Triangular array of coefficients of polynomials p(n,k) defined in Comments.

This page as a plain text file.
%I A248664 #13 Jul 23 2025 11:46:43
%S A248664 1,2,2,5,12,9,16,68,112,64,65,420,1125,1375,625,326,2910,11124,21600,
%T A248664 20736,7776,1957,22652,114611,311787,470596,369754,117649,13700,
%U A248664 196872,1254976,4455424,9342976,11468800,7602176,2097152,109601,1895148,14699961,65045025
%N A248664 Triangular array of coefficients of polynomials p(n,k) defined in Comments.
%C A248664 The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1).
%C A248664 These polynomials occur in connection with factorials of numbers of the form [n/k] = floor(n/k); e.g., Sum_{n >= 0} ([n/k]!^k)/n! = Sum_{n >= 0} (n!^k)*p(k,n)/(k*n + k - 1)!.
%H A248664 Clark Kimberling, <a href="/A248664/b248664.txt">Table of n, a(n) for n = 1..5000</a>
%e A248664 The first six polynomials:
%e A248664 p(1,x) = 1
%e A248664 p(2,x) = 2 (1 + x)
%e A248664 p(3,x) = 5 + 12 x + 9x^2
%e A248664 p(4,x) = 4 (4 + 17 x + 28 x^2 + 16 x^3)
%e A248664 p(5,x) = 5 (13 + 84 x + 225 x^2 + 275 x^3 + 125 x^4)
%e A248664 p(6,x) = 2 (163 + 1455 x + 5562 x^2 + 10800 x^3 + 10368 x^4 + 3888 x^5)
%e A248664 First six rows of the triangle:
%e A248664 1
%e A248664 2     2
%e A248664 5     12     9
%e A248664 16    68    112    64
%e A248664 65    420   1125   1375    625
%e A248664 326   2910  11124  21600   20736   7776
%t A248664 t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}];
%t A248664 p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
%t A248664 TableForm[Table[Factor[p[x, n]], {n, 1, 6}]]
%t A248664 c[n_] := c[n] = CoefficientList[p[x, n], x];
%t A248664 TableForm[Table[c[n], {n, 1, 10}]]  (* A248664 array *)
%t A248664 Flatten[Table[c[n], {n, 1, 10}]] (* A248664 sequence *)
%t A248664 u = Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *)
%t A248664 Flatten[Position[u, 1]]  (* A248667 *)
%t A248664 Table[Apply[Plus, c[n]], {n, 1, 60}]    (* A248668 *)
%t A248664 Table[p[x, n] /. x -> -1, {n, 1, 30}] (* A153229 signed *)
%Y A248664 Cf. A248665, A248666, A248667, A248668, A248669.
%K A248664 nonn,tabl,easy
%O A248664 1,2
%A A248664 _Clark Kimberling_, Oct 11 2014