This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248665 #10 Jul 01 2016 23:58:44 %S A248665 1,2,2,9,12,5,64,112,68,16,625,1375,1125,420,65,7776,20736,21600, %T A248665 11124,2910,326,117649,369754,470596,311787,114611,22652,1957,2097152, %U A248665 7602176,11468800,9342976,4455424,1254976,196872,13700,43046721,176969853,309298662 %N A248665 Triangular array of coefficients of polynomials p(n,x) defined in Comments; these are the polynomials defined at A248664, but here the coefficients are written in the order of decreasing powers of x. %C A248665 The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1). %C A248665 These polynomials occur in connection with factorials of numbers of the form [n/k] = floor(n/k); e.g., Sum_{n >= 0} ([n/k]!^k)/n! = Sum_{n >= 0} (n!^k)*p(k,n)/(k*n + k - 1)!. %H A248665 Clark Kimberling, <a href="/A248665/b248665.txt">Table of n, a(n) for n = 1..5000</a> %e A248665 The first six polynomials: %e A248665 p(1,x) = 1 %e A248665 p(2,x) = 2 (x + 1) %e A248665 p(3,x) = 9x^2 + 12 x + 5 %e A248665 p(4,x) = 4 (16 x^3 + 28 x^2 + 17 x + 4) %e A248665 p(5,x) = 5 (125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13) %e A248665 p(6,x) = 2 (3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163) %e A248665 First six rows of the triangle: %e A248665 1 %e A248665 2 2 %e A248665 9 12 5 %e A248665 64 112 68 16 %e A248665 625 1375 1125 420 65 %e A248665 7776 20736 21600 11124 2910 326 %t A248665 t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; %t A248665 p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; %t A248665 TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] %t A248665 c[n_] := c[n] = Reverse[CoefficientList[p[x, n], x]]; %t A248665 TableForm[Table[c[n], {n, 1, 10}]] (* A248665 array *) %t A248665 Flatten[Table[c[n], {n, 1, 10}]] (* A248665 sequence *) %t A248665 u = Table[Apply[GCD, c[n]], {n, 1, 60}] (*A248666*) %t A248665 Flatten[Position[u, 1]] (*A248667*) %t A248665 Table[Apply[Plus, c[n]], {n, 1, 60}] (*A248668*) %Y A248665 Cf. A248664, A248666, A248667, A248668, A248669. %K A248665 nonn,tabl,easy %O A248665 1,2 %A A248665 _Clark Kimberling_, Oct 11 2014