cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248666 Greatest common divisor of the coefficients of the polynomial p(n,x) defined in Comments.

This page as a plain text file.
%I A248666 #5 Oct 17 2014 23:20:17
%S A248666 1,2,1,4,5,2,1,4,1,10,1,4,13,2,5,4,1,2,1,20,1,2,1,4,5,26,1,4,1,10,1,4,
%T A248666 1,2,5,4,37,2,13,20,1,2,1,4,5,2,1,4,1,10,1,52,1,2,5,4,1,2,1,20,1,2,1,
%U A248666 4,65,2,1,4,1,10,1,4,1,74,5,4,1,26,1,20,1
%N A248666 Greatest common divisor of the coefficients of the polynomial p(n,x) defined in Comments.
%C A248666 The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1).  For more, see A248664.  For n such that the coefficients of p(n,x) are relatively prime, see A248667.
%e A248666 The first six polynomials are shown here.  The number just to the right of "=" is the GCD of the coefficients.
%e A248666 p(1,x) = 1*1
%e A248666 p(2,x) = 2*(x + 1)
%e A248666 p(3,x) = 1*(9x^2 + 12 x +  5)
%e A248666 p(4,x) = 4*(16 x^3 + 28 x^2 + 17 x + 4)
%e A248666 p(5,x) = 5*(125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13)
%e A248666 p(6,x) = 2*(3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163), so that A248666 = (1,2,1,4,5,2, ...).
%t A248666 t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}];
%t A248666 p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
%t A248666 TableForm[Table[Factor[p[x, n]], {n, 1, 6}]]
%t A248666 c[n_] := c[n] = CoefficientList[p[x, n], x];
%t A248666 TableForm[Table[c[n], {n, 1, 10}]]   (* A248664 array *)
%t A248666 Table[Apply[GCD, c[n]], {n, 1, 60}]  (* A248666 *)
%Y A248666 Cf. A248664, A248665, A248667, A248668, A248669.
%K A248666 nonn,easy
%O A248666 1,2
%A A248666 _Clark Kimberling_, Oct 11 2014