A248667 Numbers k for which coefficients of the polynomial p(k,x) defined in Comments are relatively prime.
1, 3, 7, 9, 11, 17, 19, 21, 23, 27, 29, 31, 33, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 93, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 147, 149, 151, 153, 157, 159, 161, 163, 167
Offset: 1
Examples
The first six polynomials with GCD(coefficients) shown just to the right of "=": p(1,x) = 1 p(2,x) = 2*(x + 1) p(3,x) = 1*(9x^2 + 12 x + 5) p(4,x) = 4*(16 x^3 + 28 x^2 + 17 x + 4) p(5,x) = 5*(125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13) p(6,x) = 2*(3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163), so that a(1) = 1 and a(2) = 3.
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] c[n_] := c[n] = CoefficientList[p[x, n], x]; TableForm[Table[c[n], {n, 1, 10}]] (* A248664 array *) u = Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *) Flatten[Position[u, 1]] (* this sequence *) Table[Apply[Plus, c[n]], {n, 1, 60}] (* A248668 *)
Comments