cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.

This page as a plain text file.
%I A248669 #7 Oct 17 2014 23:21:12
%S A248669 1,2,1,5,4,1,16,17,7,1,65,84,45,11,1,326,485,309,100,16,1,1957,3236,
%T A248669 2339,909,196,22,1,13700,24609,19609,8702,2281,350,29,1,109601,210572,
%U A248669 181481,89225,26950,5081,582,37,1,986410,2004749,1843901,984506,331775
%N A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.
%C A248669 q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x).  The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0.  The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2.  Column 2 of A248669 is given by A093344(n) for n >= 1.
%H A248669 Clark Kimberling, <a href="/A248669/b248669.txt">Table of n, a(n) for n = 1..5000</a>
%F A248669 q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
%e A248669 The first six polynomials:
%e A248669 p(1,x) = 1
%e A248669 p(2,x) = 2 + x
%e A248669 p(3,x) = 5 + 4 x + x^2
%e A248669 p(4,x) = 16 + 17 x + 7 x^2 + x^3
%e A248669 p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
%e A248669 p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
%e A248669 First six rows of the triangle:
%e A248669 1
%e A248669 2     1
%e A248669 5     4     1
%e A248669 16    17    7    1
%e A248669 65    84    45   11    1
%e A248669 326   485  309   100   16   1
%t A248669 t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
%t A248669 q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
%t A248669 TableForm[Table[q[x, n], {n, 1, 6}]];
%t A248669 TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
%t A248669 c[n_] := c[n] = CoefficientList[q[x, n], x];
%t A248669 TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
%t A248669 Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)
%Y A248669 Cf. A248665, A248666, A248667, A248668, A248670.
%K A248669 nonn,tabl,easy
%O A248669 1,2
%A A248669 _Clark Kimberling_, Oct 11 2014