cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248670 Triangular array of coefficients of polynomials q defined in Comments; the coefficients are written in the order of decreasing powers of x.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 7, 17, 16, 1, 11, 45, 84, 65, 1, 16, 100, 309, 485, 326, 1, 22, 196, 909, 2339, 3236, 1957, 1, 29, 350, 2281, 8702, 19609, 24609, 13700, 1, 37, 582, 5081, 26950, 89225, 181481, 210572, 109601, 1, 46, 915, 10319, 72679, 331775, 984506
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). (See A248669.)

Examples

			The first six polynomials:
q(1,x) = 1
q(2,x) = x + 2
q(3,x) = x^2 + 4 x + 5
q(4,x) = x^3 + 7 x^2 + 17 x + 16
q(5,x) = x^4 + 11 x^3 + 45 x^2 + 8 x + 65
q(6,x) = x^5 + 16 x^4 + 100 x^3 + 309 x^2 + 485 x + 326
First six rows of the triangle:
1
1   2
1   4    5
1   7    17   16
1   11   45   84   65
1   16   100  309  485  326
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
    q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[q[x, n], {n, 1, 6}]];
    TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
    c[n_] := c[n] = Reverse[CoefficientList[q[x, n], x]];
    TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
    Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)

Formula

q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.