A248670 Triangular array of coefficients of polynomials q defined in Comments; the coefficients are written in the order of decreasing powers of x.
1, 1, 2, 1, 4, 5, 1, 7, 17, 16, 1, 11, 45, 84, 65, 1, 16, 100, 309, 485, 326, 1, 22, 196, 909, 2339, 3236, 1957, 1, 29, 350, 2281, 8702, 19609, 24609, 13700, 1, 37, 582, 5081, 26950, 89225, 181481, 210572, 109601, 1, 46, 915, 10319, 72679, 331775, 984506
Offset: 1
Examples
The first six polynomials: q(1,x) = 1 q(2,x) = x + 2 q(3,x) = x^2 + 4 x + 5 q(4,x) = x^3 + 7 x^2 + 17 x + 16 q(5,x) = x^4 + 11 x^3 + 45 x^2 + 8 x + 65 q(6,x) = x^5 + 16 x^4 + 100 x^3 + 309 x^2 + 485 x + 326 First six rows of the triangle: 1 1 2 1 4 5 1 7 17 16 1 11 45 84 65 1 16 100 309 485 326
Links
- Clark Kimberling, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}]; q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[q[x, n], {n, 1, 6}]]; TableForm[Table[Factor[q[x, n]], {n, 1, 6}]]; c[n_] := c[n] = Reverse[CoefficientList[q[x, n], x]]; TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *) Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
Formula
q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
Comments