This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248671 #21 Aug 29 2018 16:56:05 %S A248671 1,4,5,4,7,15,9,4,5,21,13,15,15,27,27,4,19,15,21,21,35,39,25,15,7,45, %T A248671 5,27,31,79,33,4,51,57,51,15,39,63,59,21,43,103,45,39,27,75,49,15,9, %U A248671 21,75,45,55,15,75,27,83,93,61,79,63,99,35,4,87,151,69,57,99,151 %N A248671 Number of subgroups of the dihedral group Dn that are intersections of some maximal subgroups. %C A248671 Maximal subgroups are counted. %C A248671 Smallest such subgroup is the Frattini subgroup. %C A248671 These subgroups are called intersection subgroups in Ernst and Sieben link. %H A248671 Dana C. Ernst, Nandor Sieben, <a href="http://arxiv.org/abs/1407.0784">Impartial achievement and avoidance games for generating finite groups</a>, arXiv:1407.0784 [math.CO], 2014. %F A248671 a(n) = A007503(n) - 1 for squarefree n. - _Andrew Howroyd_, Jul 02 2018 %t A248671 a[n_] := With[{f = FactorInteger[n][[All, 1]]}, Sum[d+1, {d, Divisors[Times @@ f]}]-1]; %t A248671 Array[a, 70] (* _Jean-François Alcover_, Aug 29 2018, after _Andrew Howroyd_ *) %o A248671 (GAP) %o A248671 for n in [1..22] do %o A248671 G:=DihedralGroup(2*n); %o A248671 Ge:=Elements(G); %o A248671 mse:=List(MaximalSubgroups(G),s->List(s,el->Position(Ge,el))); %o A248671 C:=Combinations(mse); %o A248671 Remove(C,1); # empty intersection is removed %o A248671 I:=List(C,Intersection); %o A248671 Sort(I); %o A248671 I:=Unique(I); %o A248671 Print(Size(I),","); %o A248671 od; %o A248671 (PARI) a(n) = my(f=factor(n)[,1]); sumdiv(prod(i=1, #f, f[i]), d, d+1 ) - 1; \\ _Andrew Howroyd_, Jul 02 2018 %Y A248671 Cf. A007503. %K A248671 nonn %O A248671 1,2 %A A248671 _Nandor Sieben_, Oct 11 2014 %E A248671 a(23)-a(70) from _Andrew Howroyd_, Jul 02 2018