cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248671 Number of subgroups of the dihedral group Dn that are intersections of some maximal subgroups.

This page as a plain text file.
%I A248671 #21 Aug 29 2018 16:56:05
%S A248671 1,4,5,4,7,15,9,4,5,21,13,15,15,27,27,4,19,15,21,21,35,39,25,15,7,45,
%T A248671 5,27,31,79,33,4,51,57,51,15,39,63,59,21,43,103,45,39,27,75,49,15,9,
%U A248671 21,75,45,55,15,75,27,83,93,61,79,63,99,35,4,87,151,69,57,99,151
%N A248671 Number of subgroups of the dihedral group Dn that are intersections of some maximal subgroups.
%C A248671 Maximal subgroups are counted.
%C A248671 Smallest such subgroup is the Frattini subgroup.
%C A248671 These subgroups are called intersection subgroups in Ernst and Sieben link.
%H A248671 Dana C. Ernst, Nandor Sieben, <a href="http://arxiv.org/abs/1407.0784">Impartial achievement and avoidance games for generating finite groups</a>, arXiv:1407.0784 [math.CO], 2014.
%F A248671 a(n) = A007503(n) - 1 for squarefree n. - _Andrew Howroyd_, Jul 02 2018
%t A248671 a[n_] := With[{f = FactorInteger[n][[All, 1]]}, Sum[d+1, {d, Divisors[Times @@ f]}]-1];
%t A248671 Array[a, 70] (* _Jean-François Alcover_, Aug 29 2018, after _Andrew Howroyd_ *)
%o A248671 (GAP)
%o A248671 for n in [1..22] do
%o A248671   G:=DihedralGroup(2*n);
%o A248671   Ge:=Elements(G);
%o A248671   mse:=List(MaximalSubgroups(G),s->List(s,el->Position(Ge,el)));
%o A248671   C:=Combinations(mse);
%o A248671   Remove(C,1); # empty intersection is removed
%o A248671   I:=List(C,Intersection);
%o A248671   Sort(I);
%o A248671   I:=Unique(I);
%o A248671   Print(Size(I),",");
%o A248671 od;
%o A248671 (PARI) a(n) = my(f=factor(n)[,1]); sumdiv(prod(i=1, #f, f[i]), d, d+1 ) - 1; \\ _Andrew Howroyd_, Jul 02 2018
%Y A248671 Cf. A007503.
%K A248671 nonn
%O A248671 1,2
%A A248671 _Nandor Sieben_, Oct 11 2014
%E A248671 a(23)-a(70) from _Andrew Howroyd_, Jul 02 2018