This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248687 #16 Feb 20 2024 20:29:18 %S A248687 1,3,10,43,221,1371,9696,78751,712447,7173853,79106413,952587175, %T A248687 12397677007,173864946685,2609479384942,41786786069887, %U A248687 710577455524223,12795789975272877,243154034699436147,4864103085730989101,102153340062463300261,2247608818115460466681 %N A248687 Sum of the numbers in row n of the triangular array at A248686. %H A248687 Alois P. Heinz, <a href="/A248687/b248687.txt">Table of n, a(n) for n = 1..450</a> (first 100 terms from Clark Kimberling) %F A248687 a(n) = Sum_{k=1..n} n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1..k. %F A248687 a(n) ~ 2 * n!. - _Vaclav Kotesovec_, Oct 21 2014 %F A248687 a(n) mod 2 = 0 <=> n in { A126646 } \ { 1 }. - _Alois P. Heinz_, Feb 20 2024 %e A248687 First seven rows of the array at A248686: %e A248687 1 %e A248687 1 2 %e A248687 1 3 6 %e A248687 1 6 12 24 %e A248687 1 10 30 60 120 %e A248687 1 20 90 180 360 720 %e A248687 1 35 210 630 1260 2520 5040 %e A248687 The row sums are 1, 3, 10, ... %p A248687 b:= proc(n, k) option remember; `if`(k<1, %p A248687 `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1)) %p A248687 end: %p A248687 a:= n-> add(b(n,k), k=0..n): %p A248687 seq(a(n), n=1..22); # _Alois P. Heinz_, Feb 20 2024 %t A248687 f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}] %t A248687 t = Table[f[n, k], {n, 0, 10}, {k, 1, n}]; %t A248687 u = Flatten[t] (* A248686 sequence *) %t A248687 TableForm[t] (* A248686 array *) %t A248687 Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *) %Y A248687 Cf. A248686. %K A248687 nonn,easy %O A248687 1,2 %A A248687 _Clark Kimberling_, Oct 11 2014