cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A248693 Numbers k such that the product of factorials of proper divisors of k does not divide k!.

Original entry on oeis.org

24, 30, 36, 40, 48, 54, 60, 72, 80, 84, 90, 96, 100, 102, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 288, 294, 300, 306, 308, 312, 320
Offset: 1

Views

Author

Clark Kimberling, Oct 12 2014

Keywords

Comments

The least odd k in this sequence is 1575; see A248694 and A075460.
It seems that the property is satisfied iff v_2(n!) < v_2(P), where v_2 is the 2-adic valuation, and P = product_{d|n, dM. F. Hasler, Dec 30 2016

Examples

			Let Q(n) = n!/(product of the proper divisors of n).  Then Q(n) an integer for n = 1..23, as indicated by the following list of Q(n) for n = 1..24:  1, 2, 6, 12, 120, 60, 5040, 840, 60480, 15120, 39916800, 2310, 6227020800, 8648640, 1816214400, 10810800, 355687428096000, 2042040, 121645100408832000, 116396280, 1689515283456000, 14079294028800, 25852016738884976640000, 7436429/48.
		

Crossrefs

Cf. A075422 (primitive terms = not a multiple of an earlier term), A248694 (odd terms), A075460 (odd primitive terms), A075071, A027750.

Programs

  • Mathematica
    d[n_] := Drop[Divisors[n], -1]!; p[n_] := Apply[Times, d[n]]
    u = Select[Range[25000], ! IntegerQ[#!/p[#]] &]; (* A248693 *)
    Select[u, OddQ[#] &]  (* A248694 *)
    (* Second program *)
    Select[Range@ 320, ! Divisible[#!, Times @@ Map[Factorial, Most@ Divisors@ #]] &] (* Michael De Vlieger, Dec 31 2016 *)
  • PARI
    is(n)=prod(i=2,n-1,i,Mod(n,prod(j=2,-1+#n=divisors(n),n[j]!))) \\ Returns nonzero (actually, Mod(n!,P) where P = product_{d|n, dM. F. Hasler, Dec 30 2016
Showing 1-1 of 1 results.