This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248705 #65 Jan 13 2024 14:05:23 %S A248705 1,8,27,64,343,729,2744,3375,6859,35937,46656,148877,287496,438976, %T A248705 778688,2985984,3869893,8489664,34645976,43986977,58863869,75686967, %U A248705 398688256,426957777,485587656,596947688,835896888,1693669888,2548895896,2954987875,4758586568 %N A248705 The cubes related to the strictly increasing subsequence of A053668(n), n >= 1. %C A248705 The triangular numbers of this form are at A246753. %C A248705 The squares of this form are at A248648. %H A248705 Chai Wah Wu, <a href="/A248705/b248705.txt">Table of n, a(n) for n = 1..139</a> (first 116 terms from K. D. Bajpai) %e A248705 a(4) = 64 = 4*4*4, which is a cube. Product of its digits = 6*4 = 24. %e A248705 a(5) = 343 = 7*7*7, which is a cube. Product of its digits = 3*4*3 = 36. %e A248705 Since 36 > 24, 64 and 343 appear in the sequence. %e A248705 As suggested by _Wolfdieter Lang_, examples further clarified: %e A248705 (Start) %e A248705 A053668 is sieved (from left to right): %e A248705 1, 2, 3, 4, 5, 6, 7, 8, 9, ....(numbers: k) %e A248705 1, 8, 27, 64, 125, 216, 343, 512, 729, ....(cubes: k^3) %e A248705 1, 8, 14, 24, 10, 12, 36, 10, 126, ....(prod of digits of k^3) %e A248705 1, 8, 14, 24, X, X, 36, X, 126, ....(sieved products) %e A248705 and related leftover cubes are: %e A248705 1, 8, 27, 64, 343, 729, ....(leftover cubes) %e A248705 (End) %t A248705 A248705 = {}; t = 0; Do[s = Apply[Times, IntegerDigits[n^3]]; If[s > t, t = s; AppendTo[A248705, n^3]], {n, 1, 10^4}]; A248705 %o A248705 (PARI) \\ For b-file %o A248705 c = 0; k = 0; for(n=1, 5*10^8, d = digits(n^3); p = prod(i = 1, #d, d[i]); while(p > k, c++; print(c, " ", n^3); k = p)) %o A248705 (Python) %o A248705 from operator import mul %o A248705 from functools import reduce %o A248705 A248705_list, x, m = [], 0, [6, -6, 1, 0] %o A248705 for _ in range(10**9): %o A248705 for i in range(3): %o A248705 m[i+1]+= m[i] %o A248705 xn = reduce(mul,[int(d) for d in str(m[-1])],1) %o A248705 if xn > x: %o A248705 x = xn %o A248705 A248705_list.append(m[-1]) # _Chai Wah Wu_, Nov 19 2014 %Y A248705 Cf. A000578, A053668, A230041, A246569, A246753, A248648. %K A248705 nonn,base %O A248705 1,2 %A A248705 _K. D. Bajpai_, Oct 13 2014