This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248739 #39 Jun 06 2025 12:39:14 %S A248739 0,30,59,88,117,146,175,204,233,262,291,320,349,378,407,436,465,494, %T A248739 523,552,581,610,639,668,697,726,755,784,813,842,872,901,930,959,988, %U A248739 1017,1046,1075,1104,1133,1162,1191,1220,1249,1278,1307,1336,1365,1394,1423 %N A248739 a(n) = 29*n + ceiling(n/29). %C A248739 This is an approximation to A004962 (ceiling of n*phi^7, where phi is the golden ratio, A001622). %H A248739 Karl V. Keller, Jr., <a href="/A248739/b248739.txt">Table of n, a(n) for n = 0..1000</a> %H A248739 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/">Fibonacci numbers and the golden section</a> %H A248739 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a> %H A248739 Wikipedia, <a href="http://en.wikipedia.org/wiki/Golden_ratio">Golden ratio</a> %H A248739 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1). %F A248739 a(n) = 29*n + ceiling(n/29). %F A248739 a(n) = A004962(n) for n < 871. - _Joerg Arndt_, Oct 18 2014 %e A248739 For n = 10, 29n + ceiling(n/29) = 290 + ceiling(0.3) = 290 + 1 = 291. %p A248739 A248739:=n->29*n+ceil(n/29): seq(A248739(n), n=0..50); # _Wesley Ivan Hurt_, Oct 14 2014 %t A248739 Table[29 n + Ceiling[n/29], {n, 0, 60}] (* _Vincenzo Librandi_, Oct 13 2014 *) %o A248739 (Python) %o A248739 from math import * %o A248739 for n in range(0,101): %o A248739 print(n, (29*n+ceil(n/29.0))) %o A248739 (Magma) [29*n + Ceiling(n/29): n in [0..60]]; // _Vincenzo Librandi_, Oct 13 2014 %Y A248739 Cf. A001622 (phi), A195819 (29*n). %Y A248739 Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)). %K A248739 nonn,easy %O A248739 0,2 %A A248739 _Karl V. Keller, Jr._, Oct 13 2014