This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248749 #12 Feb 27 2025 05:05:35 %S A248749 1,5,2,9,0,8,5,5,1,3,6,3,5,7,4,6,1,2,5,1,6,0,9,9,0,5,2,3,7,9,0,2,2,5, %T A248749 2,1,0,6,1,9,3,6,5,0,4,9,8,3,8,9,0,9,7,4,3,1,4,0,7,7,1,1,7,6,3,2,0,2, %U A248749 3,9,8,1,1,5,7,9,1,8,9,4,6,2,7,7,1,1 %N A248749 Decimal expansion of limit of the real part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1). %C A248749 See A046854 for a triangle of coefficients of the numerators and denominators of f(x,n). Note that the limit of f(1,n) is the golden ratio. %F A248749 Equals (1+sqrt(2+sqrt(5)))/2. - _Vaclav Kotesovec_, Oct 19 2014 %e A248749 limit = 1.52908551363574612516099052379022521061936504983890974314077117... %e A248749 n f(x,n) Re(f(1+i,n)) Im(f(1+i,n)) %e A248749 0 1 1 0 %e A248749 1 1 + x 2 1 %e A248749 2 (1 + x + x^2)/(1 + x) 7/5 4/5 %e A248749 3 (1 + 2*x + x^2 + x^3)/(1 + x + x^2) 20/13 9/13 %e A248749 Re(f(1+i,10)) = 815/533 = 1.529080... %e A248749 Im(f(1+i,10)) = 396/533 = 0.742964... %p A248749 evalf((1+sqrt(2+sqrt(5)))/2, 120); # _Vaclav Kotesovec_, Oct 19 2014 %t A248749 $RecursionLimit = Infinity; $MaxExtraPrecision = Infinity; %t A248749 f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, 12}]; u = t /. x -> I + 1; {Re[u], Im[u]} %t A248749 {N[Re[u], 12], N[Im[u], 12]} %t A248749 t = Table[Factor[f[x, n]], {n, 1, 300}]; u = t /. x -> I + 1; %t A248749 r1 = N[Re[u][[300]], 130] %t A248749 r2 = N[Im[u][[300]], 130] %t A248749 d1 = RealDigits[r1] (* A248749 *) %t A248749 d2 = RealDigits[r2] (* A248750 *) %Y A248749 Cf. A248750, A046854. %K A248749 nonn,easy,cons %O A248749 1,2 %A A248749 _Clark Kimberling_, Oct 13 2014