This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248750 #25 Feb 27 2025 05:05:39 %S A248750 7,4,2,9,3,4,1,3,5,8,7,8,3,2,2,8,3,9,0,9,1,4,3,1,9,3,7,9,4,7,2,6,6,2, %T A248750 8,1,0,9,6,2,4,2,9,9,2,0,0,1,1,8,6,5,0,5,4,7,5,8,6,9,2,0,6,2,1,9,0,5, %U A248750 7,7,6,3,9,5,6,8,7,8,5,4,9,0,5,9,2,3 %N A248750 Decimal expansion of limit of the imaginary part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1). %C A248750 See A046854 for a triangle of coefficients of the numerators and denominators of f(x,n). Note that the limit of f(1,n) is the golden ratio. %H A248750 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A248750 Equals (1+sqrt(sqrt(5)-2))/2. - _Vaclav Kotesovec_, Oct 19 2014 %F A248750 From _Wolfdieter Lang_, Mar 02 2018: (Start) %F A248750 Equals (1 + (2 - phi)*sqrt(phi))/2, with phi = A001622. %F A248750 Equals (1/10)*y*(1 - (1/50)*y^2) with y = -A300072. (End) %e A248750 0.742934135878322839091431937947266281096242992001186505475869206219... %e A248750 n f(x,n) Re(f(1+i,n)) Im(f(1+i,n)) %e A248750 0 1 1 0 %e A248750 1 1 + x 2 1 %e A248750 2 (1 + x + x^2)/(1 + x) 7/5 4/5 %e A248750 3 (1 + 2*x + x^2 + x^3)/(1 + x + x^2) 20/13 9/13 %e A248750 Re(f(1+i,10)) = 815/533 = 1.529080... %e A248750 Im(f(1+i,10)) = 396/533 = 0.742964... %p A248750 evalf((1+sqrt(sqrt(5)-2))/2, 120); # _Vaclav Kotesovec_, Oct 19 2014 %t A248750 $RecursionLimit = Infinity; $MaxExtraPrecision = Infinity; %t A248750 z = 20; (* For more accuracy, increase z *) %t A248750 f[x_, n_] := x + 1/f[x, n - 1]; %t A248750 f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, z}]; %t A248750 u = t /. x -> I + 1; t = Table[Factor[f[x, n]], {n, 1, z}]; u = t /. x -> I + 1; %t A248750 r1 = N[Re[u][[z]], 130] %t A248750 r2 = N[Im[u][[z]], 130] %t A248750 d1 = RealDigits[r1] (*A248749*) %t A248750 d2 = RealDigits[r2] (*A248750*) %Y A248750 Cf. A248749, A046854, A248751, A248752, A001622. A300072. %K A248750 nonn,easy,cons %O A248750 0,1 %A A248750 _Clark Kimberling_, Oct 13 2014