This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248751 #18 Feb 27 2025 05:05:43 %S A248751 5,2,9,0,8,5,5,1,3,6,3,5,7,4,6,1,2,5,1,6,0,9,9,0,5,2,3,7,9,0,2,2,5,2, %T A248751 1,0,6,1,9,3,6,5,0,4,9,8,3,8,9,0,9,7,4,3,1,4,0,7,7,1,1,7,6,3,2,0,2,3, %U A248751 9,8,1,1,5,7,9,1,8,9,4,6,2,7,7,1,1,4 %N A248751 Decimal expansion of limit of the real part of f(1-i,n)/f(1-i,n+1), where f(x,n) is the n-th Fibonacci polynomial. %C A248751 The analogous limit of f(1,n)/f(1,n+1) is the golden ratio (A001622). %C A248751 Differs from A248749 only in the first digit. - _R. J. Mathar_, Oct 23 2014 %H A248751 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a> %F A248751 Equals (sqrt(2+sqrt(5))-1)/2. - _Vaclav Kotesovec_, Oct 19 2014 %e A248751 limit = 0.52908551363574612516099052379022521061936504... %e A248751 Let q(x,n) = f(x,n)/f(x,n+1) and c = 1-i. %e A248751 n f(x,n) Re(q(c,n)) Im(q(c,n)) %e A248751 1 1 1/2 1/2 %e A248751 2 x 3/5 1/5 %e A248751 3 1 + x^2 1/2 1/4 %e A248751 4 2*x + x^3 8/15 4/15 %e A248751 5 1 + 3*x^2 + x^4 69/130 33/130 %e A248751 Re(q(1-i,11)) = 5021/9490 = 0.5290832... %e A248751 Im(q(1-i,11)) = 4879/18980 = 0.257060... %p A248751 evalf((sqrt(2+sqrt(5))-1)/2, 120); # _Vaclav Kotesovec_, Oct 19 2014 %t A248751 z = 300; t = Table[Fibonacci[n, x]/Fibonacci[n + 1, x], {n, 1, z}]; %t A248751 u = t /. x -> 1 - I; %t A248751 d1 = N[Re[u][[z]], 130] %t A248751 d2 = N[Im[u][[z]], 130] %t A248751 r1 = RealDigits[d1] (* A248751 *) %t A248751 r2 = RealDigits[d2] (* A248752 *) %o A248751 (PARI) polrootsreal(4*x^4+8*x^3+2*x^2-2*x-1)[2] \\ _Charles R Greathouse IV_, Nov 26 2024 %Y A248751 Cf. A248750, A248752, A102426, A001622. %K A248751 nonn,easy,cons %O A248751 0,1 %A A248751 _Clark Kimberling_, Oct 13 2014