This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248754 #18 Jul 24 2024 18:11:02 %S A248754 11,1111,12221,23332,34443,45554,56665,67776,78887,89998,111111, %T A248754 1222221,2333332,3444443,4555554,5666665,6777776,7888887,8999998, %U A248754 9101019,11111111,102020201,112121211,122222221,132323231,142424241,152525251,162626261,172727271,182828281 %N A248754 Palindromes p=A002113(n) whose index n is also a palindrome and in addition a substring of p (strings in base 10). %C A248754 This is a proper subsequence of A248753 (where the index does not need to be palindromic). %e A248754 11 is a term because the eleventh palindrome is 11. %e A248754 1111 is a member because it is the 111th palindrome. %e A248754 12221 is in the sequence because the 222nd palindrome is 12221. %t A248754 (* first load 'nthPalindrome' from A002113 and then *) nPal[n_] := nthPalindrome[n - 1]; fQ[n_] := StringPosition[ ToString[ nPal[ nPal[ k]]], ToString[ nPal[ n]]] != {}; k = 2; lst = {}; While[k < 501, If[ fQ[k], AppendTo[lst, nPal[ nPal[ k]] ]]; k++]; lst %o A248754 (Python) %o A248754 from itertools import count, islice %o A248754 def A248754_gen(): # generator of terms %o A248754 def f(n): %o A248754 y = 10*(x:=10**(len(str(n>>1))-1)) %o A248754 return (c:=n-x)*x+int(str(c)[-2::-1] or 0) if n<x+y else (c:=n-y)*y+int(str(c)[::-1] or 0) %o A248754 for n in count(2): %o A248754 if str(m:=f(n)) in str(k:=f(m)): %o A248754 yield k %o A248754 A248754_list = list(islice(A248754_gen(),30)) # _Chai Wah Wu_, Jul 24 2024 %Y A248754 Cf. A002113, A248753. %K A248754 nonn,base,easy %O A248754 1,1 %A A248754 _Robert G. Wilson v_, Oct 13 2014