This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248763 #9 Sep 01 2024 09:37:31 %S A248763 1,1,1,2,2,2,2,4,12,12,12,24,24,24,360,1440,1440,1440,1440,2880,60480, %T A248763 60480,60480,120960,604800,604800,1814400,3628800,3628800,3628800, %U A248763 3628800,14515200,479001600,479001600,479001600,958003200,958003200,958003200 %N A248763 Greatest k such that k^3 divides n! %C A248763 Every term divides all its successors. %H A248763 Clark Kimberling, <a href="/A248763/b248763.txt">Table of n, a(n) for n = 1..1000</a> %H A248763 Rafael Jakimczuk, <a href="https://doi.org/10.12988/imf.2017.7542">On the h-th free part of the factorial</a>, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634. %F A248763 From _Amiram Eldar_, Sep 01 2024: (Start) %F A248763 a(n) = A053150(n!). %F A248763 a(n) = (n! / A145642(n))^(1/3) = A248762(n)^(1/3). %F A248763 log(a(n)) = (1/3)*n*log(n) - (log(3)+1)*n/3 + o(n) (Jakimczuk, 2017). (End) %e A248763 a(4) = 2 because 2^3 divides 24 and if k > 2, then k^3 > 8 does not divide 24. %t A248763 z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; %t A248763 u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; %t A248763 v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; %t A248763 p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; %t A248763 m = 3; Table[p[m, n], {n, 1, z}] (* A248762 *) %t A248763 Table[p[m, n]^(1/m), {n, 1, z}] (* A248763 *) %t A248763 Table[n!/p[m, n], {n, 1, z}] (* A145642 *) %t A248763 f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* _Amiram Eldar_, Sep 01 2024 *) %o A248763 (PARI) a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\3));} \\ _Amiram Eldar_, Sep 01 2024 %Y A248763 Cf. A000142, A053150, A145642, A248762. %K A248763 nonn,easy %O A248763 1,4 %A A248763 _Clark Kimberling_, Oct 14 2014