A248767 Greatest 5th power integer that divides n!.
1, 1, 1, 1, 1, 1, 1, 32, 32, 32, 32, 248832, 248832, 248832, 248832, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 61917364224, 193491763200000, 193491763200000, 193491763200000, 6191736422400000, 6191736422400000, 6191736422400000
Offset: 1
Examples
a(8) = 32 because 32 divides 8! and if k > 2 then k^5 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 5; Table[p[m, n], {n, 1, z}] (* A248767 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248768 *) Table[n!/p[m, n], {n, 1, z}] (* A248769 *)
Formula
a(n) = n!/A248769(n).
Comments