A248769 Greatest 5th-power-free divisor of n!.
1, 2, 6, 24, 120, 720, 5040, 1260, 11340, 113400, 1247400, 1925, 25025, 350350, 5255250, 2627625, 44669625, 804053250, 15277011750, 305540235000, 6416344935000, 141159588570000, 3246670537110000, 10020588077500, 80164704620, 2084282320120, 56275622643240
Offset: 1
Examples
a(8) = 1260 because 1260 divides 8! and if k > 1260 divides 8!, then h^5 divides 8!/k for some h > 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 5; Table[p[m, n], {n, 1, z}] (* A248767 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248768 *) Table[n!/p[m, n], {n, 1, z}] (* A248769 *)
Formula
a(n) = n!/A248767(n).
Comments