cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248769 Greatest 5th-power-free divisor of n!.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 1260, 11340, 113400, 1247400, 1925, 25025, 350350, 5255250, 2627625, 44669625, 804053250, 15277011750, 305540235000, 6416344935000, 141159588570000, 3246670537110000, 10020588077500, 80164704620, 2084282320120, 56275622643240
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Examples

			a(8) = 1260 because 1260 divides 8! and if k > 1260 divides 8!, then h^5 divides 8!/k for some h > 1.
		

Crossrefs

Programs

  • Mathematica
    z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 5; Table[p[m, n], {n, 1, z}]  (* A248767 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248768 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248769 *)

Formula

a(n) = n!/A248767(n).

A248767 Greatest 5th power integer that divides n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 32, 32, 32, 32, 248832, 248832, 248832, 248832, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 7962624, 61917364224, 193491763200000, 193491763200000, 193491763200000, 6191736422400000, 6191736422400000, 6191736422400000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(8) = 32 because 32 divides 8! and if k > 2 then k^5 does not divide 8!.
		

Crossrefs

Programs

  • Mathematica
    z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 5; Table[p[m, n], {n, 1, z}]  (* A248767 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248768 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248769 *)

Formula

a(n) = n!/A248769(n).

A248782 Number of integers k^5 that divide n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 15, 30, 30, 30, 36, 36, 36, 36, 42, 56, 56, 112, 112, 112, 128, 128, 128, 128, 128, 128, 144, 270, 270, 270, 300, 300, 300, 300, 300, 300, 396, 792, 792, 792, 792, 792, 864, 864, 864, 1512
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(12) counts these divisors of 12!:  1, 32, 243, 1024, 7776, 248832.
		

Crossrefs

Programs

  • Mathematica
    z = 130; m = 5;
    f[n_] := f[n] = FactorInteger[n!]; r[x_] := r[x] = m*Floor[x/m]
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    a[n_] := Apply[Times, 1 + r[v[n]]/m]
    t = Table[a[n], {n, 1, z}] (* A248782 *)
  • PARI
    a(n)=c=0;d=divisors(n!);for(i=1,#d,if(ispower(d[i])&&ispower(d[i])%5==0,c++));c+1
    n=1;while(n<50,print1(a(n),", ");n++) \\ Derek Orr, Oct 20 2014
Showing 1-3 of 3 results.