A248770 Greatest 6th power integer that divides n!.
1, 1, 1, 1, 1, 1, 1, 64, 64, 64, 64, 64, 64, 64, 46656, 2985984, 2985984, 2985984, 2985984, 191102976, 191102976, 191102976, 191102976, 191102976, 2985984000000, 2985984000000, 2176782336000000, 139314069504000000, 139314069504000000, 139314069504000000
Offset: 1
Examples
a(8) = 64 because 64 divides 8! and if k > 2 then k^6 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 6; Table[p[m, n], {n, 1, z}] (* A248770 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248771 *) Table[n!/p[m, n], {n, 1, z}] (* A248772 *)
Formula
a(n) = n!/A248772(n).
Comments