A248772 Greatest 6th-power-free divisor of n!.
1, 2, 6, 24, 120, 720, 5040, 630, 5670, 56700, 623700, 7484400, 97297200, 1362160800, 28028000, 7007000, 119119000, 2144142000, 40738698000, 12730843125, 267347705625, 5881649523750, 135277939046250, 3246670537110000, 5194672859376, 135061494343776
Offset: 1
Examples
a(8) = 630 because 630 divides 8! and if k > 630 divides 8!, then h^6 divides 8!/k for some h > 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 6; Table[p[m, n], {n, 1, z}] (* A248770 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248771 *) Table[n!/p[m, n], {n, 1, z}] (* A248772 *)
Formula
a(n) = n!/A248770(n).
Comments