cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248772 Greatest 6th-power-free divisor of n!.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 630, 5670, 56700, 623700, 7484400, 97297200, 1362160800, 28028000, 7007000, 119119000, 2144142000, 40738698000, 12730843125, 267347705625, 5881649523750, 135277939046250, 3246670537110000, 5194672859376, 135061494343776
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Examples

			a(8) = 630 because 630 divides 8! and if k > 630 divides 8!, then h^6 divides 8!/k for some h > 1.
		

Crossrefs

Programs

  • Mathematica
    z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 6; Table[p[m, n], {n, 1, z}]  (* A248770 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248771 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248772 *)

Formula

a(n) = n!/A248770(n).

A248770 Greatest 6th power integer that divides n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 64, 64, 64, 64, 64, 64, 64, 46656, 2985984, 2985984, 2985984, 2985984, 191102976, 191102976, 191102976, 191102976, 191102976, 2985984000000, 2985984000000, 2176782336000000, 139314069504000000, 139314069504000000, 139314069504000000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(8) = 64 because 64 divides 8! and if k > 2 then k^6 does not divide 8!.
		

Crossrefs

Programs

  • Mathematica
    z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 6; Table[p[m, n], {n, 1, z}]  (* A248770 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248771 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248772 *)

Formula

a(n) = n!/A248772(n).

A248783 Number of integers k^6 that divide n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 16, 16, 24, 30, 30, 30, 30, 36, 36, 36, 36, 36, 36, 36, 48, 56, 56, 112, 112, 112, 112, 128, 128, 128, 128, 192, 192, 216, 216, 270, 270, 270, 270, 300, 300, 300, 300, 300, 360, 396, 396
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(16) counts these divisors of 16!:  1^6, 2^6, 2^12, 3^6, 6^6, 12^6.
		

Crossrefs

Programs

  • Mathematica
    z = 130; m = 6;
    f[n_] := f[n] = FactorInteger[n!]; r[x_] := r[x] = m*Floor[x/m]
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    a[n_] := Apply[Times, 1 + r[v[n]]/m]
    t = Table[a[n], {n, 1, z}] (* A248783 *)
  • PARI
    a(n)=c=0;d=divisors(n!);for(i=1,#d,if(ispower(d[i])&&ispower(d[i])%6==0,c++));c+1
    n=1;while(n<50,print1(a(n),", ");n++) \\ Derek Orr, Oct 20 2014
Showing 1-3 of 3 results.