A248774 Greatest k such that k^7 divides n!
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 360, 360, 720, 720, 720, 720, 720, 720, 1440, 1440, 1440, 1440, 1440, 1440, 1440, 4320, 8640, 8640, 8640, 60480, 60480, 60480, 120960, 120960, 120960, 120960
Offset: 1
Examples
a(8) = 2 because 2^7 divides 8! and if k > 2 then k^7 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 7; Table[p[m, n], {n, 1, z}] (* A248773 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248774 *) Table[n!/p[m, n], {n, 1, z}] (* A248775 *)
Comments