A248779 Rectangular array, by antidiagonals: T(m,n) = greatest (m+1)-th-power-free divisor of n!.
1, 2, 1, 6, 2, 1, 6, 6, 2, 1, 30, 3, 6, 2, 1, 5, 15, 24, 6, 2, 1, 35, 90, 120, 24, 6, 2, 1, 70, 630, 45, 120, 24, 6, 2, 1, 70, 630, 315, 720, 120, 24, 6, 2, 1, 7, 210, 2520, 5040, 720, 120, 24, 6, 2, 1, 77, 2100, 280, 1260, 5040, 720, 120, 24, 6, 2, 1, 231
Offset: 1
Examples
Northwest corner: 1 2 6 6 30 5 35 70 1 2 6 3 15 90 630 630 1 2 6 24 120 45 315 2520 1 2 6 24 120 720 5040 1260
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Programs
-
Mathematica
f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}] t = Table[n!/p[m, n], {m, 2, 16}, {n, 1, 16}]; TableForm[t] (* A248779 array *) f = Table[t[[n - k + 1, k]], {n, 12}, {k, n, 1, -1}] // Flatten (* A248779 seq. *)
Comments