This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248781 #6 Oct 26 2014 21:08:34 %S A248781 1,1,1,1,1,2,2,2,4,6,6,6,6,6,6,8,8,15,15,30,30,30,30,36,36,36,48,112, %T A248781 112,112,112,128,128,144,216,270,270,270,270,300,300,300,300,660,792, %U A248781 792,792,864,1296,1728,1728,3744,3744,4368,4368,4704,4704,4704 %N A248781 Number of integers k^4 that divide n! %H A248781 Clark Kimberling, <a href="/A248781/b248781.txt">Table of n, a(n) for n = 1..1000</a> %e A248781 a(10) counts these divisors of 10!: 1, 16, 81, 256, 1296, 20736. %t A248781 z = 130; m = 4; %t A248781 f[n_] := f[n] = FactorInteger[n!]; r[x_] := r[x] = m*Floor[x/m] %t A248781 u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; %t A248781 v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; %t A248781 a[n_] := Apply[Times, 1 + r[v[n]]/m] %t A248781 t = Table[a[n], {n, 1, z}] (* A248781 *) %o A248781 (PARI) a(n)=c=0;d=divisors(n!);for(i=1,#d,if(ispower(d[i])&&ispower(d[i])%4==0,c++));c+1 %o A248781 n=1;while(n<50,print1(a(n),", ");n++) \\ _Derek Orr_, Oct 20 2014 %Y A248781 Cf. A000142, A055993, A248780, A248765. %K A248781 nonn,easy %O A248781 1,6 %A A248781 _Clark Kimberling_, Oct 15 2014