cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248789 Decimal expansion of the variance associated with the fraction of guests without a napkin in Conway’s napkin problem.

This page as a plain text file.
%I A248789 #14 Jan 17 2020 16:18:25
%S A248789 0,3,4,7,6,3,1,0,5,5,6,1,0,2,6,0,6,5,6,3,3,6,9,7,4,5,4,7,7,9,4,7,0,1,
%T A248789 0,5,2,4,0,1,2,3,6,0,0,7,0,5,0,8,5,1,8,9,1,3,5,5,5,3,1,4,1,2,0,9,1,6,
%U A248789 4,0,1,7,1,0,3,6,6,2,4,3,0,3,7,5,2,0,2,4,2,1,2,4,9,1,2,5,6,2,7,3
%N A248789 Decimal expansion of the variance associated with the fraction of guests without a napkin in Conway’s napkin problem.
%H A248789 Anders Claesson, T. Kyle Petersen, <a href="http://arxiv.org/abs/math/0505080">Conway’s napkin problem</a>, arXiv:math/0505080 [math.CO] 2005.
%H A248789 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 2.
%F A248789 Equals (3 - e)*(2 - sqrt(e))^2.
%e A248789 0.034763105561026065633697454779470105240123600705...
%t A248789 Join[{0}, RealDigits[(3 - E)*(2 - Sqrt[E])^2, 10, 99] // First]
%o A248789 (PARI) (3-exp(1))*(2-exp(1/2))^2 \\ _Charles R Greathouse IV_, Oct 31 2014
%Y A248789 Cf. A000670, A068996, A248788.
%K A248789 nonn,cons,easy
%O A248789 0,2
%A A248789 _Jean-François Alcover_, Oct 14 2014