This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248793 #25 Sep 08 2022 08:46:10 %S A248793 2,3,5,11,7,17,11,13,23,23,17,19,41,31,23,59,41,29,71,31,47,53,47,37, %T A248793 59,89,41,43,83,71,47,71,97,53,71,79,89,59,167,61,103,83,67,71,73,113, %U A248793 139,167,79,83,223,107,131,179,89,233,167,127,251,97,101,103 %N A248793 Sigma(n) - 1 for n such that sigma(n) - 1 is prime. %C A248793 a(n) = corresponding values of primes p = sigma(A248792(n)) - 1, where A248792(n) = numbers n such that sigma(n) - 1 is prime. %C A248793 If there are at least two numbers k, h such that a(k) = a(h) = p, then p is in A158913. %H A248793 Michael De Vlieger, <a href="/A248793/b248793.txt">Table of n, a(n) for n = 1..10000</a> %H A248793 OEIS Wiki, <a href="https://oeis.org/wiki/Cyclotomic Polynomials at x=n, n! and sigma(n)">Cyclotomic Polynomials at x=n, n! and sigma(n)</a> %F A248793 a(n) = A000203(A248792(n)) - 1. %F A248793 If A248792(n) is a prime p, then a(n) = A248792(n) = p. %p A248793 F:= proc(n) %p A248793 local r; %p A248793 r:= numtheory:-sigma(n)-1; %p A248793 if isprime(r) then r else NULL fi %p A248793 end proc: %p A248793 seq(F(n),n=1..1000); # _Robert Israel_, Nov 02 2014 %t A248793 a248793[n_Integer] := %t A248793 Cases[DivisorSigma[1, #] - 1 & /@ Range[n], _?PrimeQ]; a248793[104] (* _Michael De Vlieger_, Nov 07 2014 *) %o A248793 (Magma) [a: n in [1..1000] | IsPrime(a) where a is SumOfDivisors(n)-1] %o A248793 (PARI) for(n=1,10^3,if(isprime(sigma(n)-1),print1(sigma(n)-1,", "))) \\ _Derek Orr_, Nov 01 2014 %Y A248793 Cf. A000203, A000040, A066073, A248792. %K A248793 nonn,easy %O A248793 1,1 %A A248793 _Jaroslav Krizek_, Nov 01 2014