This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248804 #40 Mar 24 2023 08:40:52 %S A248804 18,8284,90452,60287,526624,24,36999,669,6,24076630,5945,382,85,6,427, %T A248804 9,3,0,2,7,66,0,57,429526059,0,813,2862,4,763,5,9525,90,573,4,21540, %U A248804 934884,46066808,6847,85,4234544,53,77,9,551702,8386062,8,7520,38265,760,7 %N A248804 Prime sieve of e. %H A248804 Manfred Scheucher, <a href="/A248804/b248804.txt">Table of n, a(n) for n = 1..441</a> %H A248804 Manfred Scheucher, <a href="/A248804/a248804_1.sage.txt">Sage Script</a> (Note: should also run in pure python with a few modifications). %H A248804 Wikipedia, <a href="https://en.wikipedia.org/wiki/E_(mathematical_constant)">e (mathematical constant)</a>. %o A248804 (Python) %o A248804 from decimal import * %o A248804 getcontext().prec = 300 %o A248804 def primes(n): %o A248804 """ Returns a list of primes < n """ %o A248804 sieve = [True] * n %o A248804 for i in range(3,int(n**0.5)+1,2): %o A248804 if sieve[i]: %o A248804 sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1) %o A248804 return [2] + [i for i in range(3,n,2) if sieve[i]] %o A248804 b = primes(429526060) %o A248804 x = (Decimal(1).exp()) %o A248804 y = str(x).replace(".","") %o A248804 for x in b: %o A248804 y = y.replace(str(x)," ",1) #replace first occurrence only %o A248804 f = [int(x) for x in y.split()[:-1]] %o A248804 print(f) %o A248804 # _David Consiglio, Jr._, Jan 03 2015 %Y A248804 Cf. A001113, A245770 (prime sieve of Pi), A248831 (prime sieve of sqrt(2)). %K A248804 nonn,base %O A248804 1,1 %A A248804 _Jared Kish_, Oct 14 2014 %E A248804 More terms from _David Consiglio, Jr._, Jan 03 2015 %E A248804 More terms from _Manfred Scheucher_, May 25 2015