cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248815 Numbers equal to the arithmetic derivative of their Euler totient function.

This page as a plain text file.
%I A248815 #13 Jul 11 2019 17:48:47
%S A248815 31,32,80,81,112,176,192,244,368,752,859,912,944,1296,1328,1712,1723,
%T A248815 2672,2864,3024,3632,4208,5552,5744,6128,6156,7472,7664,8048,8748,
%U A248815 9008,9392,11504,13424,13808,14192,15728,16304,18992,20412,20528,20912,21104,21872
%N A248815 Numbers equal to the arithmetic derivative of their Euler totient function.
%C A248815 Solutions of the equation n = (phi(n))’.
%H A248815 Amiram Eldar, <a href="/A248815/b248815.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..500 from Paolo P. Lava)
%e A248815 Euler totient function of 32 is 16 and the arithmetic derivative of 16 is 32.
%p A248815 with(numtheory): P:= proc(q) local a,n,p; for n from 1 to q do
%p A248815 a:=phi(n)*add(op(2,p)/op(1,p),p=ifactors(phi(n))[2]);
%p A248815 if n=a then print(n); fi; od; end: P(10^9);
%t A248815 deriv[n_] := n*Total[#2/#1 & @@@ FactorInteger[n]]; aQ[1] = 1; aQ[n_] := deriv[EulerPhi[n]] == n; Select[Range[25000], aQ] (* _Amiram Eldar_, Jul 11 2019 *)
%Y A248815 Cf. A000005, A003415, A166374.
%K A248815 nonn
%O A248815 1,1
%A A248815 _Paolo P. Lava_, Oct 15 2014