A248834 The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
PARI
{ r=0.4;print1(round(6/r),", ");r1=r;dn=1; for (n=1,40, if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2)); ac=sqrt(ab^2-r^2); if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r); b=acos(r/ab)-z; r=r*(1-cos(b))/(1+cos(b)); print1(round((6/r)*dn),", "); dn=dn*3 ) }
Formula
Conjecture: a(n) = 17*a(n-1) - 51*a(n-2) + 27*a(n-3) for n > 3. - Colin Barker, Oct 15 2014
Empirical g.f.: 5*(54*x^3-117*x^2+46*x-3) / ((3*x-1)*(9*x^2-14*x+1)). - Colin Barker, Oct 15 2014
Comments