This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248836 #27 Jun 28 2025 12:56:25 %S A248836 1,2,6,22,96,482,2736,17302,120576,917762,7574016,67354582,642041856, %T A248836 6530291042,70589700096,808090395862,9766250151936,124258689304322, %U A248836 1660195646078976,23239748527125142,340125128186658816,5194627679316741602,82645634692238278656 %N A248836 Number of length n arrays x(i), i=1..n with x(i) in 0..i and no value appearing more than 2 times. %C A248836 Column 2 of A248842 %H A248836 R. H. Hardin, <a href="/A248836/b248836.txt">Table of n, a(n) for n = 0..210</a> %F A248836 From _Seiichi Manyama_, Feb 17 2025: (Start) %F A248836 Conjecture: E.g.f.: 1/(1 - sin(x))^2. %F A248836 If the above conjecture is correct, the following general term is obtained: %F A248836 a(n) = Sum_{k=0..n} (k+1)! * i^(n-k) * A136630(n,k), where i is the imaginary unit. (End) %F A248836 Conjecture from _Mikhail Kurkov_, Jun 26 2025: (Start) %F A248836 a(n) = R(n+1,0) where %F A248836 R(0,0) = 1, %F A248836 R(n,k) = Sum_{j=0..n-k-1} R(n-1,j) for 0 <= k < n, %F A248836 R(n,n) = Sum_{j=0..n-1} R(n,j). (End) %e A248836 Some solutions for n=6 %e A248836 ..1....1....1....1....1....0....1....0....0....0....1....0....1....1....1....0 %e A248836 ..0....2....2....0....2....2....2....2....2....1....1....1....2....0....0....1 %e A248836 ..0....3....0....1....2....1....2....1....1....1....0....3....0....1....2....0 %e A248836 ..1....4....0....0....4....2....0....3....3....2....3....3....4....0....0....2 %e A248836 ..4....0....3....4....3....4....4....0....1....5....4....2....2....2....2....4 %e A248836 ..5....6....4....5....4....0....3....6....6....5....0....2....5....4....4....4 %Y A248836 Cf. A000111, A248842. %K A248836 nonn %O A248836 0,2 %A A248836 _R. H. Hardin_, Oct 15 2014 %E A248836 a(0)=1 prepended by _Seiichi Manyama_, Feb 17 2025