This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248845 #21 Oct 21 2014 23:12:37 %S A248845 1,1,1,2,4,8,14,20,20,3,9,27,78,210,510,1050,1680,1680,4,16,64,252, %T A248845 960,3480,11760,36120,97440,218400,369600,369600,5,25,125,620,3020, %U A248845 14300,65100,281400,1138200,4229400,14091000,40656000,96096000,168168000,168168000,6,36,216,1290,7620,44220,250320,1371720,7215600,36086400 %N A248845 Triangle read by rows: T(m,n) = number of ways of distributing n distinguishable balls into m distinguishable bins of size 3 where empty bins are permitted (m >= 1, 1 <= n <= 3m). %H A248845 Marko R. Riedel, <a href="http://math.stackexchange.com/questions/975503">Distinguishable balls into distinguishable boxes with a maximum capacity</a> %F A248845 E.g.f. for row m: (sum(k=0..s) z^k/k!)^m, s=3 %e A248845 Triangle T(n, m) is %e A248845 1, 1, 1; %e A248845 2, 4, 8, 14, 20, 20; %e A248845 3, 9, 27, 78, 210, 510, 1050, 1680, 1680; %e A248845 4, 16, 64, 252, 960, 3480, 11760, 36120, 97440, 218400, 369600, 369600; %p A248845 P := proc(n, m, s) n!*coeftayl(add(z^k/k!, k=0..s)^m, z=0, n); end; %K A248845 nonn,tabf %O A248845 1,4 %A A248845 _Marko Riedel_, Oct 15 2014