This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248850 #16 Dec 14 2014 02:50:16 %S A248850 1,6,7,37,43,233,276,1469,1745,9266,11011,58449,69460,368695,438155, %T A248850 2325725,2763880,14670658 %N A248850 First row of spectral array W(1/sin(1)). %C A248850 1/sin(1) = 1.18839510577812121626159945237455100352782983409796262526525... %C A248850 The sequence is generated from the Beatty sequence (A108120) and from the complement of the Beatty sequence (A108587) for 1/sin(1). %H A248850 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149. %o A248850 (PARI) %o A248850 \\ Row i of the generalized Wythoff array W(h), %o A248850 \\ where h is an irrational number between 1 and 2, %o A248850 \\ and m is the number of terms in the vectors b and c. %o A248850 row(h, i, m) = { %o A248850 if(h<=1 || h>=2, print("Invalid value for h"); return); %o A248850 my( %o A248850 b=vector(m, n, floor(n*h)), \\ Beatty sequence for h %o A248850 c=vector(m, n, floor(n*h/(h-1))), \\ Complement of b %o A248850 w=[b[b[i]], c[b[i]]], %o A248850 j=3 %o A248850 ); %o A248850 while(1, %o A248850 if(j%2==1, %o A248850 if(w[j-1]<=#b, w=concat(w, b[w[j-1]]), return(w)) %o A248850 , %o A248850 if(w[j-2]<=#c, w=concat(w, c[w[j-2]]), return(w)) %o A248850 ); %o A248850 j++ %o A248850 ) %o A248850 } %o A248850 allocatemem(10^9) %o A248850 default(realprecision, 100) %o A248850 row(1/sin(1), 1, 10^7) %Y A248850 Cf. A108120, A108587. %K A248850 nonn,more %O A248850 1,2 %A A248850 _Colin Barker_, Dec 03 2014