This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248880 #15 Jun 13 2015 00:55:16 %S A248880 1,0,1,1,2,1,4,3,7,7,13,14,24,28,45,56,86,111,165,218,317,426,611,831, %T A248880 1181,1619,2286,3150,4428,6123,8582,11896,16641,23105,32278,44865, %U A248880 62620,87103,121499,169087,235761,328214,457508,637064,887857,1236500,1723054 %N A248880 Number of tilings of an n X 1 rectangle by tiles of dimension 1 X 1 and 2 X 1 such that every tile shares an equal-length edge with a tile of the same size. %H A248880 Paul Tek, <a href="/A248880/b248880.txt">Table of n, a(n) for n = 0..1000</a> %H A248880 Paul Tek, <a href="/A248880/a248880.png">Illustration of the formula</a> %H A248880 Paul Tek, <a href="/A248880/a248880_1.png">Illustration of the first terms</a> %H A248880 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,1). %F A248880 [ 0 1 0 1 0 0 0 ] [1] %F A248880 [ 0 0 1 0 0 0 0 ] [0] %F A248880 [ 0 0 1 1 0 0 0 ] [1] %F A248880 a(n) = [1 0 0 0 0 0 0] * [ 0 0 0 0 1 0 0 ] ^ n * [0], for any n>=0. %F A248880 [ 0 0 0 0 0 1 0 ] [0] %F A248880 [ 0 0 0 0 0 0 1 ] [0] %F A248880 [ 0 1 0 0 0 1 0 ] [1] %F A248880 G.f.: -(x^2-x+1)*(x^4-x^2+1) / (x^6-x^3+x^2+x-1). - _Colin Barker_, Mar 05 2015 %e A248880 A 3 X 1 rectangle can be tiled in three ways: %e A248880 +-+-+-+ +-+---+ +---+-+ %e A248880 | | | |, | | | and | | |. %e A248880 +-+-+-+ +-+---+ +---+-+ %e A248880 The first tiling is acceptable, as every 1 X 1 tile is next to another 1 X 1 tile (and there are no 2 X 1 tiles). %e A248880 The second and third tilings are not acceptable, as the 1 X 1 tiles are not next to other 1 X 1 tiles. %e A248880 Hence, a(3)=1. %o A248880 (PARI) Vec(-(x^2-x+1)*(x^4-x^2+1)/(x^6-x^3+x^2+x-1) + O(x^100)) \\ _Colin Barker_, Mar 05 2015 %Y A248880 Cf. A245596. %K A248880 nonn,easy %O A248880 0,5 %A A248880 _Paul Tek_, Mar 05 2015