This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248905 #35 Aug 04 2020 06:18:45 %S A248905 1,1,2,1,5,5,1,30,192,15,1,1247 %N A248905 Array read by antidiagonals: the number of automata over an n-letter alphabet whose states are determined by the last k symbols read. %C A248905 T(n,k) is the number of automata over an n-letter alphabet whose states are determined by the last k symbols read. These therefore correspond to a count of a special class of synchronized automata as in the Road Coloring Problem solved by Trahtman. %C A248905 Also, T(n,k) counts equivalence relations on de Bruijn graphs compatible with edge labels. %H A248905 Collin Bleak, <a href="/A248905/a248905.txt">Table of a(n,k) listed as antidiagonal ordered sequence in index m = 1..15.</a> %H A248905 Collin Bleak, Peter J. Cameron, and Feyishayo Olukoya, <a href="https://arxiv.org/abs/2004.08478">Automorphisms of shift spaces and the Higman-Thomspon groups: the one-sided case</a>, arXiv:2004.08478 [math.GR], 2020. %H A248905 Avraham N. Trahtman, <a href="http://arxiv.org/abs/0709.0099">The Road Coloring Problem</a>, arXiv:0709.0099 [cs.DM], 2007. %H A248905 Avraham N. Trahtman, <a href="http://dx.doi.org/10.1007/s11856-009-0062-5">The Road Coloring Problem</a>, Israel Journal of Mathematics, 172 (2009), 51-60. %F A248905 T(n,1) = A000110(n). %e A248905 Below is the table T(n,k) for row n = alphabet size, and column k = synchronizing word length. Top left entry is T(1,1). %e A248905 1 1 1 1 1 1 ... %e A248905 2 5 30 1247 ? %e A248905 5 192 ? ? %e A248905 15 98721 ? %e A248905 203 ? %e A248905 . %e A248905 . %e A248905 . %Y A248905 Cf. A000110 (first column). %K A248905 hard,more,nonn,tabl %O A248905 1,3 %A A248905 _Collin Bleak_ and _Peter J. Cameron_, Mar 06 2015