A248969 Start with a single equilateral triangle; at odd n-th generation add a similar triangle at each expandable vertex (this is the "vertex to vertex" version); alternate with the "side to vertex" version for even n-th generation; a(n) is the number of triangle for each generation.
1, 3, 6, 15, 18, 42, 24, 57, 30, 72, 36, 87, 48, 114, 54, 129, 60, 144, 66, 159, 78, 186, 84, 201, 90, 216, 96, 231, 108, 258, 114, 273, 120, 288, 126, 303, 138, 330, 144, 345, 150, 360, 156, 375, 168, 402, 174, 417, 180, 432, 186, 447, 198, 474, 204, 489, 210, 504, 216, 519
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Crossrefs
Programs
-
PARI
{ c2=0;c3=0;c6=3;c7=1;c8=0; for(n=0,100, if (Mod(n,2)==0, \\even if (n<1,a(n)=1,c3=c3+c2;a=6*c3); c1=n/8+3/4; if (c1==floor(c1),c2=2,c2=1) , \\odd c4=(n^2-1)/16; if (c4==floor(c4),c5=-1,c5=1); if (n>4, c6=c6+c5); if (n>=2, c7=c7+c6); if (c6<>4, c9=0,c9=2); a=3*(c7+c8+c9); c8=c7 ); print1(a", ") ) }
Formula
Empirical g.f.: (3*x^11 +x^10 +12*x^9 +5*x^8 +15*x^7 +6*x^6 +27*x^5 +12*x^4 +12*x^3 +5*x^2 +3*x +1) / ((x -1)^2*(x +1)^2*(x^2 +1)*(x^4 +1)). - Colin Barker, Oct 18 2014
Extensions
Edited. Small changes in the text. - Wolfdieter Lang, Nov 10 2014
Comments