cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248970 Bases that lack a three-digit narcissistic number: numbers n with no 1 <= x < n, 0 <= y,z < n such that x^3 + y^3 + z^3 = n^2*x + n*y + z.

Original entry on oeis.org

72, 90, 108, 153, 270, 423, 450, 531, 558, 630, 648, 738, 1044, 1098, 1125, 1224, 1242, 1287, 1440, 1503, 1566, 1611, 1620, 1800, 1935, 2034, 2142, 2250, 2358, 2439, 2448, 2511, 2754, 2790, 2799, 2862, 2943, 2952
Offset: 1

Views

Author

Michael R Peake, Oct 18 2014

Keywords

Comments

All terms are multiples of 9.

Examples

			17=1^3+2^3+2^3 is 122 in base 3, so 3 is not in the sequence.
		

Crossrefs

Cf. A005188 (base 10).

Programs

  • MATLAB
    for Base=1:100,Noneyet=1;for a=1:Base-1,for b=0:Base-1,for c=0:Base-1,if a*Base*Base+b*Base+c==a^3+b^3+c^3,Noneyet = 0;end;end;end;end;if Noneyet,disp(Base);end;end;
    
  • PARI
    is(n)=if(n%9,return(0)); for(x=1,n-1,for(y=0,x,for(z=0,y, my(v=digits(x^3+y^3+z^3,n)); if(vecsort(v)==[z,y,x],return(0))))); 1 \\ slow; Charles R Greathouse IV, Oct 21 2014
    
  • PARI
    is(n)=if(n%9,return(0)); my(mx=n*(n-1)*(n-2),t); for(x=1,n-1,for(y=0,n-1, t=n*(n*x+y)-x^3-y^3; if(t>=0 && t <= mx && !polisirreducible('z^3-'z-t) && #select(P->poldegree(P)==1&&polcoeff(P,0)<=0 && polcoeff(P,0)>-n, factor('z^3-'z-t)[,1]), return(0)))); 1 \\ faster; Charles R Greathouse IV, Oct 21 2014

Extensions

a(26)-a(38) from Charles R Greathouse IV, Oct 21 2014