cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248995 Number of length n+4 0..2 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

This page as a plain text file.
%I A248995 #7 Jul 23 2025 11:49:01
%S A248995 190,464,1140,2802,6872,16800,41084,100590,246378,603406,1477382,
%T A248995 3616932,8855718,21683810,53094696,130003772,318312974,779389186,
%U A248995 1908348180,4672636566,11441043846,28013571820,68591653930,167947819478
%N A248995 Number of length n+4 0..2 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.
%C A248995 Column 2 of A249001
%H A248995 R. H. Hardin, <a href="/A248995/b248995.txt">Table of n, a(n) for n = 1..210</a>
%F A248995 Empirical: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) +2*a(n-4) +16*a(n-5) -3*a(n-6) -27*a(n-7) -36*a(n-8) -41*a(n-9) -73*a(n-10) -56*a(n-11) +40*a(n-12) +103*a(n-13) +182*a(n-14) +48*a(n-15) +102*a(n-16) +147*a(n-17) +128*a(n-18) -82*a(n-19) +74*a(n-20) +90*a(n-21) -137*a(n-22) -220*a(n-23) -204*a(n-24) -4*a(n-25) -152*a(n-26) -201*a(n-27) -183*a(n-28) +54*a(n-29) -37*a(n-30) -48*a(n-31) +a(n-32) -31*a(n-33) -10*a(n-34) -8*a(n-35) +24*a(n-36) +16*a(n-37)
%e A248995 Some solutions for n=6
%e A248995 ..0....0....1....1....1....0....2....2....0....0....2....2....2....0....0....0
%e A248995 ..0....1....1....0....2....1....1....0....1....2....0....0....1....1....1....1
%e A248995 ..2....2....1....2....1....2....1....2....2....0....2....0....0....1....2....0
%e A248995 ..0....1....2....1....2....1....0....1....0....2....2....0....2....2....0....2
%e A248995 ..0....2....2....0....0....2....2....2....0....0....0....1....2....2....0....1
%e A248995 ..0....0....2....0....2....1....2....2....0....2....2....1....1....0....0....2
%e A248995 ..1....1....2....0....2....2....1....2....0....0....2....2....1....2....0....1
%e A248995 ..0....0....0....2....2....1....2....1....2....0....0....2....1....2....1....1
%e A248995 ..1....1....0....2....2....0....1....2....0....0....2....2....1....0....2....2
%e A248995 ..1....0....0....0....1....2....1....2....0....1....2....2....2....0....1....0
%K A248995 nonn
%O A248995 1,1
%A A248995 _R. H. Hardin_, Oct 18 2014