A248996 Number of length n+4 0..3 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.
820, 2668, 8680, 28240, 91888, 299044, 973204, 3167500, 10309372, 33554728, 109215076, 355477276, 1157029012, 3765974644, 12257760052, 39897482020, 129861371368, 422682950584, 1375781835724, 4478003930896, 14575364597464
Offset: 1
Keywords
Examples
Some solutions for n=5: ..3....0....1....2....0....0....1....3....2....1....0....3....1....0....0....3 ..0....2....0....0....3....0....2....2....2....0....0....1....2....1....3....0 ..3....2....3....3....3....2....1....0....3....2....0....2....1....0....0....0 ..1....0....0....1....1....2....0....0....2....0....2....0....0....2....0....1 ..0....2....2....2....1....2....3....3....0....0....0....0....0....3....3....3 ..2....2....3....0....3....3....2....3....0....0....1....1....3....1....3....2 ..1....0....1....3....1....3....3....0....1....1....0....0....3....1....3....1 ..3....3....1....3....1....2....1....1....3....3....1....0....0....1....2....0 ..0....1....1....3....3....3....0....2....0....2....2....0....0....0....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A249001.
Formula
Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3) - 9*a(n-4) + 16*a(n-5) - 48*a(n-6) - 21*a(n-7) + 8*a(n-8) + 3*a(n-9).
Empirical g.f.: 4*x*(205 + 52*x - 241*x^2 - 579*x^3 - 36*x^4 - 3382*x^5 - 1168*x^6 + 563*x^7 + 192*x^8) / (1 - 3*x - 2*x^2 + x^3 + 9*x^4 - 16*x^5 + 48*x^6 + 21*x^7 - 8*x^8 - 3*x^9). - Colin Barker, Nov 09 2018