A249002 Number of length 1+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.
30, 190, 820, 2540, 6450, 13990, 27740, 50260, 86030, 139450, 217320, 325940, 475630, 674650, 937020, 1274160, 1703970, 2240850, 2908260, 3723400, 4715230, 5905430, 7328400, 9009880, 10991870, 13303750, 15994820, 19100260, 22676370
Offset: 1
Keywords
Examples
Some solutions for n=6: 6 2 5 5 0 5 4 4 3 2 2 6 3 4 0 0 4 3 4 5 3 1 5 6 1 2 1 6 4 6 1 3 1 1 6 4 5 6 5 2 0 1 6 6 0 2 1 1 1 5 5 1 1 4 5 6 2 1 0 6 3 6 0 4 3 1 0 1 0 3 1 1 2 2 5 2 4 0 5 4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..209
Crossrefs
Row 1 of A249001.
Formula
Empirical: a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 5*a(n-4) - 3*a(n-5) + 6*a(n-6) + 6*a(n-7) - 3*a(n-8) - 5*a(n-9) - a(n-10) + 3*a(n-11) + a(n-12) - a(n-13).
Empirical for n mod 6 = 0: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (47/3)*n
Empirical for n mod 6 = 1: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (86/9)*n + (565/72)
Empirical for n mod 6 = 2: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (181/9)*n - (20/9)
Empirical for n mod 6 = 3: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (2/3)*n + (205/8)
Empirical for n mod 6 = 4: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (221/9)*n - (160/9)
Empirical for n mod 6 = 5: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (46/9)*n + (1685/72).
Empirical g.f.: 10*x*(3 + 16*x + 54*x^2 + 118*x^3 + 179*x^4 + 178*x^5 + 143*x^6 + 84*x^7 + 44*x^8 + 24*x^9 + 21*x^10) / ((1 - x)^6*(1 + x)^3*(1 + x + x^2)^2). - Colin Barker, Nov 09 2018