This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249021 #6 Oct 19 2014 13:30:52 %S A249021 7,38,117,18,268,515,70,882,32,182,99,29718,2072,1068,43,2943,378,500, %T A249021 5604,4030,4005,8890182,776,5357,57,1744,6948,113582,4832118,8827, %U A249021 1118,1111225770,68,1764132,11018,3141,251,13545,1710,23156,71011068,16432,6072,82,1407,8920484118,1063532,19703 %N A249021 Value x in the solution of x^2-D*y^2=-1 as D runs through A003654. %C A249021 The pair (x,y) is taken from the numerator of the earliest (lowest order) convergent to the continued fraction of sqrt(D) that satisfies the "non-Pell" equation. %p A249021 A249021 := proc(n) %p A249021 local dis,cf,o,q,x,y ; %p A249021 dis := A003654(n) ; %p A249021 cf := numtheory[cfrac](sqrt(dis),'periodic','quotients') ; %p A249021 for o from 1 do %p A249021 q := numtheory[nthconver](cf,o) ; %p A249021 x := numer(q) ; %p A249021 y := denom(q) ; %p A249021 if x^2-dis*y^2 = -1 then %p A249021 return x ; %p A249021 end if; %p A249021 end do: %p A249021 end proc: %p A249021 seq(A249021(n),n=1..50) ; %Y A249021 Cf. A130226. %K A249021 nonn %O A249021 1,1 %A A249021 _R. J. Mathar_, Oct 19 2014